
Автор: Стефан Янсен
Издательство: БXВ
Год: 2020
Страниц: 559
Формат: PDF
Размер: 12,39 МБ
Качество: отличное
Язык: русский
Машинное обучение для алгоритмической торговли на финансовых рынках. Практикум — Книга посвящена практике применения машинного обучения с целью создания мощных алгоритмических стратегий для успешной торговли на финансовых рынках. Изложены базовые принципы работы с данными: оценивание наборов данных, доступ к данным через API на языке Python, доступ к финансовым данным на платформе Quandl и управление ошибками предсказания. Рассмотрены построение и тренировка алгоритмических моделей с помощью Python-библиотек pandas, Seaborn, StatsModels и sklearn и построение, оценка и интерпретация моделей AR(p), MA(q) и ARIMA(p, d, q) с использованием библиотеки StatsModels. Описано применение библиотеки PyMC3 для байесового машинного обучения, библиотек NLTK, sklearn (Scikit-learn) и spaCy для назначения отметок финансовым новостям и классифицирования документов, библиотеки Keras для создания, настройки и оценки нейронных сетей прямого распространения, рекуррентных и сверточных сетей. Показано, как применять трансферное обучение к данным спутниковых снимков для предсказания экономической активности и как эффективно использовать подкрепляемое обучение для достижения оптимальных результатов торговли.
Для финансовых аналитиков и программистов на языке Python.
Скачать Машинное обучение для алгоритмической торговли на финансовых рынках. Практикум
![]() |
![]() |
![]() |
![]() |
Интернет-магазин детских игрушек | Книжный интернет-магазин | Интернет-магазин для учителей | Интернет-магазин учебной литературы |
Все материалы, представленные на нашем сайте, Вы сможете скачать по ссылкам различных бесплатных файлообменников совершенно бесплатно!
Инструкции, поясняющие, как надо качать бесплатно с файлообменников смотреть тут
Регистрация на нашем сайте позволит Вам добавлять свои книги, а также комментировать опубликованные книги, общаться с нашими авторами.
Для этого мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.